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Abstract

A simplified model, to that produced previously by the authors, for the galvanostatic discharge of primary alkaline battery cathodes is
presented. Laplace transform and perturbation methods are employed to obtain the leading order spatial and temporal behaviour of the porous
cathode over two distinct size scales. It is shown that for a wide range of industrially relevant discharge conditions the time taken for KOH
electrolyte to diffuse into a porous electrolytic manganese dioxide particle is fast compared with the cathodic discharge time and that ohmic
losses within the graphite phase of the cathode can be considered to be negligible. Numerical solution of the simplified model equations is
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iscussed and the results are validated against relevant experimental data.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Primary alkaline battery cathodes are compacted mix-
ures of fine particles of electrolytic manganese dioxide
EMD) and graphite that are flooded with concentrated
7–10 M) aqueous potassium hydroxide (KOH). Cathodes
re usually constructed with relative weight percentages of
pproximately 80–87% EMD, 5–12% graphite and 6–12%
OH [1]. These cathodes are complex porous structures,
nd their discharge behaviour is the result of interconnected
nd non-linear physical, chemical and electrochemical
henomena that occur over several size scales. Development
f improved battery materials and systems requires a sound
nderstanding of these processes.

Mathematical modelling provides a unique opportunity to
nderstand the processes and their interactions that determine
he discharge behaviour of primary alkaline battery cathodes.
uch modelling can also provide direction for further research
nd explanations for experimental observations.

In a series of papers, Newman and co-workers [2–8]
developed an approach to modelling porous electrodes,
referred to as Macrohomogeneous Porous Electrode Theory.
This approach has been used as a basis for a number of
alkaline battery models, including those of Wruck [9], Chen
and Cheh [10,11], Podlaha and Cheh [12,13], Zhang and
Cheh [14], Farrell et al. [15], and Kriegsmann and Cheh
[16].

To date, the systematic analysis of previous models has
been largely restricted to sensitivity arguments that involve a
small sub-set of parameters within the model system in ques-
tion. A more general sensitivity analysis, however, has been
undertaken by Zhang and Cheh [17] for the alkaline battery
model originally posed by Chen and Cheh [10]. Furthermore,
Farrell and Please [1] applied perturbation methods in order
to analyse a set of equations, previously developed by Farrell
et al. [15], for the galvanostatic discharge of a single porous
particle of EMD. Their work led to significant simplifications
and a greater knowledge of the behaviour of particle dis-
charge. Nevertheless, we note that no experimental validation
of their results was presented because individual particle dis-
∗ Corresponding author. Tel.: +61 7 3864 4442; fax: +61 7 3864 2310.
E-mail address: j.johansen@qut.edu.au (J.F. Johansen).

charge at the size scales found within commercial cathodes
is difficult.
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Nomenclature

a activity of a dissolved species (mol cm−3)
A,B arbitrary constants
C concentration (mol cm−3)
C̄Mn4+ Laplace transform of CMn4+
Ĉe,0,1,... terms of the asymptotic expansion of Ĉe in α5
De∞ diffusion coefficient of KOH (cm2 s−1)
f function used to solve auxiliary Eq. (40).
F Faraday’s constant (C mol−1)
H height of cathode (cm)
i current density (A cm−2)
in transfer current density from oxide to solution

phase (A cm−2)
i00 initial equilibrium exchange current density

(A cm−2)
I total discharge current (A)
k2, k3 constants associated with calculating the con-

ductivity of EMD
L the Laplace transform function
p Laplace transform variable
r radial coordinate on the particle scale (cm)
ro outer radius of particle (cm)
R radial coordinate on the cathode scale (cm)
Rgas universal gas constant (J K−1 mol−1)
Ri inner radius of cathode (cm)
Ro outer radius of cathode (cm)
t time (s)
t* dummy variable used in integrals
tK+ transport (transference) number for K+

T temperature (K)
v� volume-average velocity of electrolyte

(cm s−1)
V̄e partial molar volume of electrolyte

(cm3 mol−1)
V̄H2O partial molar volume of H2O (cm3 mol−1)
V̄Mn3+ partial molar volume of Mn3+ (cm3 mol−1)
V̄Mn4+ partial molar volume of Mn4+ (cm3 mol−1)
y radial coordinate on the crystal scale (cm)
yo outer radius of EMD crystal (cm)

Greek
α1–17 dimensionless constants associated with the

dimensionless equation set
εEMD fraction of total cathode volume that is EMD
εs fraction of the cathode volume that is void
η local overpotential (V)
κe∞ conductivity of bulk electrolyte solution

(S cm−1)
λn the positive roots of Eq. (28)
σg conductivity of bulk graphite (S cm−1)

Superscripts
0 value at t = 0 s

Subscripts
e electrolyte phase
Mn4+ manganese 4+ ion
p manganese oxide particle scale

In this work, we begin by considering the full cathodic
discharge model proposed by Farrell et al. [15], which was
shown to compare favourably with available galvanostatic
discharge data. Our aim is to apply perturbation methods in
order to analyse the key physical, chemical and electrochem-
ical processes that govern the behaviour of the model and,
in so doing, obtain a simplified model system that accounts
for these key processes. This work extends the work of
Farrell and Please [1] into the cathodic domain and yields a
simplified model with solutions that can be directly validated
against experimental data. Such validation is presented
here.

2. Model development

2.1. Full cathode model

To model effectively the processes that occur in the multi-
scale environment of an alkaline battery cathode, Farrell et al.
[15] employ a simplified description of the cathode. In their
model, the EMD and graphite in the cathode are assumed to be
well mixed, that is, each porous EMD particle is surrounded
by a continuous graphite phase that connects the porous
EMD particles to the current-collector. These porous EMD
p
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articles consist of aggregates of non-porous EMD crystals.
oth crystals and particles are assumed to be spherical. In
ddition, the network of pores within the EMD particles and
etween the EMD and graphite particles is assumed to be
ooded with concentrated aqueous KOH electrolyte solution.
schematic diagram of these size scales is given in Fig. 1.

urthermore, the Mn4+ ions within the crystals are assumed to
nly undergo the first electron reduction step as given by the
eaction,

nO2 + H2O + e− ⇔ MnOOH + OH− (1)

The governing equations and associated boundary and ini-
ial conditions previously introduced by Farrell et al. [15] to
escribe the galvanostatic discharge of the three-scale struc-
ure depicted in Fig. 1 are summarised below. The equations
re given in dimensionless form below.

The crystal scale:

α1
∂ĈMn4+

∂t̂
= 1

ŷ2

∂

∂ŷ

(
ŷ2 ∂ĈMn4+

∂ŷ

)
, (2)
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Fig. 1. Schematic diagram of three size scales within a primary alkaline
battery cathode.

∂ĈMn4+

∂ŷ

∣∣∣∣∣
ŷ=0

= 0, (3)

∂ĈMn4+

∂ŷ

∣∣∣∣∣
ŷ=1

= α1 în, (4)

în = α2

{(
1 − α3 ĈMn4+

∣∣
ŷ=1

1 − α3

)
Ĉe(p)exp

(
α14η̂(p) + α15

(
1 − Ĉ

− ĈMn4+
∣∣
ŷ=1

(
1 − α4Ĉe(p)

1 − α4

)
exp

(
−α14η̂(p) − α15

(
1 − ĈMn4+

ĈMn4+|t̂=0 = 1. (6)

The particle scale:

1

r̂2

∂

∂r̂
(r̂2 îe(p)) = 3în, (7)

1

r̂2

∂

∂r̂
(r̂2v̂�(p)) = 3în, (8)

α5
∂Ĉe(p)

∂t̂
= 1

r̂2

∂

∂r̂

(
D̂e∞r̂2 ∂Ĉe(p)

∂r̂

)
− 3α5α6 în

α5α7 ∂ 2 �

Ĉe(p)
∣∣
r̂=1 = Ĉe, (11)

η̂(p)
∣∣
r̂=1 = η̂, (12)

∂Ĉe(p)

∂r̂

∣∣∣∣∣
r̂=0

= 0, (13)

v̂�(p)

∣∣∣
r̂=0

= 0, (14)

∂η̂(p)

∂r̂

∣∣∣∣
r̂=0

= 0, (15)

Ĉe(p)
∣∣
t̂=0 = 1. (16)

The cathode scale:

1

α17 + R̂

∂

∂R̂
((α17 + R̂)îe) = 3 îe(p)

∣∣
r̂=1, (17)

1

α17 + R̂

∂

∂R̂

((
α17 + R̂

)
v̂�
)

= 3 v̂�(p)

∣∣∣
r̂=1

, (18)

α5

α2
16

√
εs(p)

εs

∂Ĉe

∂t̂
= 1

α17 + R̂

∂

∂R̂

(
D̂e∞

(
α17 + R̂

) ∂Ĉe

∂R̂

)

− α5α7α11

α2
16

1

α17 + R̂

∂

∂R̂
((α17 + R̂)v̂�Ĉe)( )∣

H

−
r̂2 ∂r̂

(r̂ Ĉe(p)v̂(p)), (9)

∂η̂(p)

∂r̂
= îe(p)

⎡
⎣ 1(

ĈMn4+
∣∣
ŷ=0.8

)k3 + α8

κ̂e∞

⎤
⎦

+α9

[
1 + α10Ĉe(p)

1 − α4Ĉe(p)

]
∂ ln âe(p)

∂Ĉe(p)

∂Ĉe(p)

∂r̂
, (10)
Mn4+
∣∣
ŷ=1

))
∣∣
ŷ=1

))}
,

(5)

−3α11

α2
16

D̂e∞
∂Ĉe(p)

∂r̂
− α5α7v̂

�
(p)Ĉe(p)

∣∣∣∣
r̂=1

,

(19)

∂η̂

∂R̂
= α12

α2
16

îe

(
1

κ̂e∞
+ α13

)
− α12α13α17

α2
16

(
α17 + R̂

)
+α9

[
1 + α10Ĉe

1 − α4Ĉe

]
∂ ln âe

∂Ĉe

∂Ĉe

∂R̂
, (20)

Ĉe
∣∣
R̂=0 = 1, (21)

îe
∣∣
R̂=0 = 1, (22)

îe
∣∣
R̂=1 = 0, (23)

v̂�
∣∣∣
R̂=1

= 0, (24)

∂Ĉe

∂R̂

∣∣∣∣∣
R̂=1

= 0, (25)

Ĉe
∣∣
t̂=0 = 1. (26)

ereafter, we refer to Eqs. (2)–(26) as the full cathode model.
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Table 1
Dimensionless variables

ŷ = y

yo
în = 2πRiH (Ro − Ri) εEMD

Iyo
in

r̂ = r

ro
v̂�(p) = 2πRiH (Ro − Ri) εEMDF

ro

(
V̄H2O − t�

K+ V̄e

)
I
(

1 − εs(p)

) v�(p)

R̂ = R − Ri

Ro − Ri
v̂� = 2πRiHF(

V̄H2O − t�
K+ V̄e

)
I
v�

ĈMn4+ = CMn4+

C0
Mn4+

η̂(p) = 2πRiH (Ro − Ri) εEMDk2

r2
oI

η(p)

Ĉe(p) = Ce(p)

C0
e

η̂ = 2πRiH (Ro − Ri) εEMDk2

r2
oI

η

Ĉe = Ce

C0
e

t̂ = I

2πRiH (Ro − Ri) εEMDFC0
Mn4+

t

îe = 2πRiH

I
ie îe(p) = 2πRiH (Ro − Ri) εEMD

I
(

1 − εs(p)

)
ro

ie(p)

D̂e∞ = De∞
D0

e∞
κ̂e∞ = κe∞

κ0
e∞

The relationships between dimensionless variables in the
above equations and their dimensioned counterparts are listed
in Table 1.

The dimensionless constants α1–α17 appearing in Eqs.
(2)–(26) are listed in Table 2 along with their typical value
ranges. In obtaining the typical ranges for these parameters,
the discharge rate has been varied from 5 to 200 mA g−1 of
EMD, the particle radius (ro) from 5 to 250 �m, and the cath-
ode thickness (Ro − Ri) from 0.5 to 5 mm. Such variations are
indicative of the industrially relevant ranges of these param-
eters [18]. The remaining parameter values used to calculate
the typical ranges given in Table 2 are given in Tables 3 and 4.
The dimensionless constants used here are similar to those
used by Farrell and Please [1] for their particle scale model,
but here the constants relate to the time scale of cathodic
discharge rather than the time scale of particle discharge.

3. Simplified cathode model

We now systematically reduce the full system of model
equations introduced above in order to obtain a simplified
model that retains the essential physical, chemical and elec-
trochemical phenomena that comprise the discharge of a
primary alkaline battery cathode.

a
t
e
M
A

C

Table 2
Dimensionless constants and their typical range of values

Dimensionless constant Typical range

α1 = Iy2
o

2πRiH (Ro − Ri) εEMDDH+C0
Mn4+F

0.032 ≤ α1 ≤ 1.3

α2 = 2πRiH (Ro − Ri) εEMDi00

Iyo
0.022 ≤ α2 ≤ 0.87

α3 = V̄Mn3+C0
Mn4+ 1

α4 = V̄eC
0
e 0.16

α5 = r2
oI

2πRiH (Ro − Ri) εEMDD0
e∞

√
εs(p)FC0

Mn4+
5.5 × 10−9 ≤ α5 ≤
0.014

α6 =
t�
K+C0

Mn4+

εs(p)C
0
e

12

α7 =
(
V̄H2O − t�

K+ V̄e

)(
1 − εs(p)

)
C0

Mn4+

εs(p)
6.4

α8 =
k2

(
1 − εs(p)

)
κ0

e∞
√

ε3
s(p)

9.7 × 104

α9 = 4πRiH (Ro − Ri) εEMDRgasTt�
K+k2

Fr2
oI

3000 ≤ α9 ≤ 7.6×109

α10 = C0
e V̄H2O

t�
K+

0.74

α11 =
εEMD

√
ε3

s(p)(
1 − εs(p)

)√
ε3

s

0.029

α12 = k2εEMD

κ0
e∞
√

ε3
s

2800

α13 = κ0
e∞
√

ε3
s

σg
8.3 × 10−10

α14 = Fr2
oI

4πRiH (Ro − Ri) εEMDRgasTk2
2.9 × 10−11 ≤
α14 ≤ 7.2 × 10−5

α15 =
k1V̄Mn3+C0

Mn4+F

2RgasT
6.8

α16 = ro

Ro − Ri
2.0 × 10−4 ≤
α16 ≤ 0.5

α17 = Ri

Ro − Ri
2000 ≤ α17 ≤
2.0 × 104

Table 3
Parameter values used in model

Parameter Values and reference

C0
e (mol cm−3) 0.009 [22]

CMn4+ (mol cm−3) 0.0486 [15]
DH+ (cm2 s−1) 1 × 10−15 [30]
F (C mol−1) 96485.309 [31]
i00 (A cm−2) 5 × 10−8 [15]
k1 (V) 0.35
k2 (S cm−1) 1.5 × 102

k3 4.328
Rgas (J K−1 mol−1) 8.31451 [31]
T (K) 298.15
tK+ 0.22 [32]
V̄e (cm3 mol−1) 17.8 [33]
V̄H2O (cm3 mol−1) 18.07 [33]
V̄Mn3+ (cm3 mol−1) 20.576
V̄Mn4+ (cm3 mol−1) 20.576
yo (cm) 2.6 × 10−6 [22]
εEMD(p) 0.9 [22]
σg (S cm−1) 7 × 106 [31]
The initial boundary value problem given by Eqs. (2)–(4)
nd (6) is simplified by applying the method of Laplace
ransforms (See for example, Trim [19]) to obtain a single
xpression, which governs the concentration distribution of
n4+ within an EMD crystal. Details are given in Appendix
, where we show that:

ˆ 4
(
ŷ, t̂
) = 1 + 3

∫ t̂

0
în dt∗ + 2

ŷ

∞∑
m=1

sin (λmŷ)

sin (λm)

×
∫ t̂

0
în
∣∣
t̂=t̂−t∗exp

(−λ2
mt∗

α1

)
dt∗, (27)
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Table 4
Model input data for simulation of experimental set-up used by Williams
[22]

Parameter Value

Discharge rate (mA g−1 of EMD) 50
Particle radius, ro (cm) 10 × 10−4, 45 × 10−4,

100 × 10−4 and 180 × 10−4

Inner radius, Ri (cm) 1000.0
Outer radius, Ro (cm) 1000.5
Height, H (cm) 6.603 × 10−4

Total mass of cathode (g) 4.5
Mass of EMD in cathode (g) 1.0
Mass of graphite in cathode (g) 2.9

where t* is a dummy variable and the values of λm (m = 1, 2,
. . ., ∞) are given by the positive roots of

tan (λm) − λm = 0. (28)

Expression (27) replaces Eqs. (2)–(4), and thereby
accounts for diffusion within the crystals in the model.

An asymptotic solution for the Mn4+ concentration has
been obtained by Farrell and Please [1], and is based on two
assumptions. The first is that α1 is small. The dimensionless
constant α1 represents the ratio of the time it takes a pro-
ton to diffuse a distance yo to the time required to discharge
completely the cathode. The assumption that �1 → 0 seems
appropriate for all but high discharge rates (see Table 2). The
second assumption is that the transfer current, în, does not
change on the timescale of crystal scale diffusion. This par-
ticular assumption is suited to particle discharge, because the
reaction distribution within a single particle varies less when
the particle is discharged under galvanostatic conditions. In
contrast to this, within a cathode being discharged galvanos-
tatically, each particle discharges with a varying current, and
thus the transfer current is likely to vary on the timescale of
crystal scale diffusion. We note that for the simplified case
of constant transfer current, Eq. (27) reduces to that given by
F

M
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r
t
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e

C

Since all spatial variation of electrolyte on the particle
scale is eliminated, Eq. (10) becomes:

∂η̂(p)

∂r̂
= îe(p)

((
ĈMn4+

∣∣
ŷ=0.8

)−k3 + α8

κ̂e∞

)
. (30)

Combining Eq. (30) with the overpotential boundary con-
dition given by Eq. (15), we find that at r̂ = 0:

îe(p) = 0. (31)

It now becomes evident from the similarity of Eqs. (7) and
(8), and Eqs. (14) and (31), that:

îe(p) = v̂�(p) (32)

Noting this, Eqs. (17) and (18) now have the same source
term and they have identical boundary conditions at R̂ = 1.
Thus,

îe = v̂�. (33)

A further consequence of the loss of spatial variation
within the electrolyte solution of the porous particles, as
given by Eq. (29), is that the source term within Eq. (19) van-
ishes. This term does, however, provide a vital link within the
m
r
i
b
t
M
s
p
B

o
o
e
E

c
t
d

arrell and Please.
Having obtained an expression for the concentration of

n4+ ions in EMD crystals, we now turn our attention to the
article scale. The dimensionless constant α5 represents the
atio of the time it takes electrolyte to diffuse a distance ro to
he time required to discharge completely the cathode. For all
ut very large particles under very high discharge rates, α5 is
mall (see Table 2) and we assume that �5 → 0. In addition,
t is noted that the constants α6 and α7 are O(1) (see Table 2).
tilizing these observations in a regular perturbation analysis
f Eq. (9), it is found that to leading order, the spatial variation
f the electrolyte concentration on the particle scale can be
liminated from the model (see Appendix B), that is,

ˆ e(p)
(
R̂, r̂, t̂

) = Ĉe
(
R̂, t̂
)
. (29)
odel, between the reaction rate on the particle scale and the
eaction rate on the cathode scale. Thus, rather than apply-
ng the leading order (i.e., O(α0

5)) expansion for Ĉe(p) given
y Eq. (29), in this instance a version of Eq. (9) is obtained
hat is accurate to O(α5) (refer to Eq. (63) in Appendix B).

anipulation of this equation yields an expression for the
ource term in Eq. (19) that preserves the link between the
article and the cathode scales (refer to Eq. (66) in Appendix
). Substituting into Eq. (19) gives:

(1 + α11)
∂Ĉe

∂t̂
= α2

16

α5(α17 + R̂)

∂

∂R̂

(
D̂e∞(α17 + R̂)

∂Ĉe

∂R̂

)

− α7α11

(α17 + R̂)

∂

∂R̂
((α17 + R̂)îeĈe) − 3α6α11 îe(p)

∣∣
r̂=1.

(34)

On the cathodic scale, the constant α13 represents the ratio
f the conductivity of the KOH electrolyte to the conductivity
f the graphite phase. The data in Table 2 show that α13 is
xtremely small, and thus in the asymptotic limit, �13 → 0,
q. (20) can be simplified to yield:

∂η̂

∂R̂
= α12

α2
16κ̂e∞

îe + α9

(
1 + α10Ĉe

1 − α4Ĉe

)
∂ ln âe

∂Ĉe

∂Ĉe

∂R̂
. (35)

Eqs. (5), (7), (17), (27), (30), (34) and (35) with boundary
onditions (12), (15), (21)–(23) and (25) and initial condi-
ions (6) and (26) represent a simplified model of cathodic
ischarge for a primary alkaline battery system.
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4. Solution of simplified equations

The simplified model equations are solved numerically
by applying a finite-volume method [20] in which they are
discretised over the radial variable on either the cathode or
particle scale and in time. The reaction terms are fully lin-
earised, and all other non-linearities are dealt with by apply-
ing a fixed-point iteration method (see, for example, [21]).
The time discretisation can be adjusted by use of a weighting
parameter from fully explicit to fully implicit. The solution
is implemented in an extensive program using MATLAB®.
The numerical algorithm used to solve the equation system
steps through time and iteratively refines the solution of the
discretised system of equations at each time step. If the itera-
tion process of the solution does not converge, a smaller time
step is chosen until it does. The adaptive nature of the time
stepping makes the method robust over a wide parameter
range. The algorithm terminates if the required cell voltage
or finishing time is reached or if the time step is reduced
too much.

The simplifications carried out in the previous section
provide a substantial reduction in complexity of the model
system, which now has only one partial differential equation,
as compared with three in the full model system. The
ensuing reduction in the number of numerical calculations
needed to solve the system means that the software that
i
s
w
R
o

4

s
c
u
e
5

i
f

Υ

p
[
r
r
r
d

e
o

form, this function is given by:

σEMD = k2
(
1 − εs(p)

)(CMn4+

C0
Mn4+

)k3

, (37)

and appears in dimensionless form in Eq. (30) of our simpli-
fied model.

5. Results and discussion

Williams [22] galvanostatically discharged a series of
planar EMD cathodes in KOH electrolyte at a rate of
20, 50 or 100 mA g−1 of EMD. Each cathode con-
sisted of EMD particles that were taken from a specific
size fraction, namely: 2ro ≤ 45 �m, 77 �m ≤ 2ro ≤ 106 �m,
150 �m ≤ 2ro ≤ 300 �m and 300 �m ≤ 2ro ≤ 500 �m. A
comparison of the output of the simplified model with the
experimental data of Williams is given in Fig. 2, and Table 4
lists the parameter values used in the model to simulate the
experimental data.

In order to simulate the planar geometry of the experimen-
tal cathodes using the cylindrical model, the inner and outer
radii of each cathode in the model are artificially increased
whilst still maintaining the experimentally observed cathode
thickness and cathode volume. This procedure causes the cur-
v
d
c

c
m
t
i
t

F
b
c
r
r

mplements the numerical solution is easily run on a
tandard desktop PC. For example, on a desktop machine
ith a 2.4 GHz Pentium® 4 processor and 512 MB of
AM, a typical discharge simulation takes of the order
f 60.

.1. Physical parameters

A list of the parameter values used in the model analy-
is that follows is given in Table 3. Many of the values are
onsistent with those given by Farrell et al. [15], but the val-
es k1, k2 and k3 were obtained by fitting the model to the
xperimental data of Williams [22], as discussed in Section
.

The constant k1(V) is the coefficient of the so-called
on–ion interaction term adopted by Farrell et al. [15] in the
ull model. In dimensioned form, this term is given by:

= k1(1 − CMn4+
∣∣
ŷ=1V̄Mn3+ ). (36)

Υ appears in dimensionless form in Eq. (5) of our sim-
lified model. Such terms have been used by several authors
23–26] in order to overcome the fact that manganese oxide
eduction is not really a single-step process, as defined by
eaction (1), but rather a combination of several individual
eduction processes [26–29] for which appropriate kinetic
ata are as yet unknown.

The constants k2 (S cm−1) and k3 are, respectively, the pre-
xponential and exponential coefficients in the manganese
xide conductivity function of the full model. In dimensioned
ature of the electrode to decrease and the model equations
eveloped in the previous section for cylindrical geometry
onverge to the corresponding equations for linear geometry.

From the data Fig. 2, it is seen that the model results
ompare well with the experimental data. The simplified
odel accurately captures the polarisation effects seen in

he experimental results with the cathodic discharge time
ncreasing as the EMD particle size is decreased. This is due
o more uniform reaction distributions within the smaller

ig. 2. Comparison between experimental discharge results (unshaded sym-
ols) and simplified model results (shaded symbols) for planar cathodes with
onfiguration given in Table 4. (©) ro = 150–250 �m, (�) ro = 180 �m, (�)

o = 75–150 �m, (�) ro = 100 �m, (♦) ro = 38.5–53 �m, (�) ro = 45 �m, (�)

o = 0–22.5 �m and (�) ro = 10 �m.



J.F. Johansen et al. / Journal of Power Sources 156 (2006) 645–654 651

EMD particles that lead to a greater utilisation of active
material within cathodes containing these particles.

In simulating the data of Williams, we have taken the value
of CMn4+ that appears in the manganese oxide conductivity
function (given by Eq. (37)) to be that at 80% of the radius
(i.e., 0.8yo) of a given crystal. This corresponds to the value of
ĈMn4+ at ŷ = 0.8 appearing in Eqs. (10) and (30). The effect
of choosing various positions within the oxide crystals at
which to take the value of CMn4+ in order to calculate the man-
ganese oxide conductivity is shown in Fig. 3. The simulations
are for the cathode manufactured by Williams that consists
of EMD particles in the size fraction 150 �m ≤ 2ro ≤ 300 �m
(refer to Table 4). The experimental discharge result is also
given in Fig. 3.

The results in Fig. 3 indicate that taking the value of CMn4+
at 0.8yo yields a theoretical discharge that corresponds well
with the experimental result. Farrell et al. [15] and Farrell and
Please [1] previously took the concentration value appearing
in the conductivity function to be that at the outer radius of the
manganese oxide crystals. As Fig. 3 demonstrates, however,
this approach appears to overestimate the resistance experi-
enced by electrons moving within the oxide used by Williams
and leads to reduced discharge times in comparison with the
experimental data. To obtain more accurate predictions of
the conductivity of non-uniformly reduced EMD, an in-depth
study into the current paths and the connectivity on a crystal
s

t
(
e
a
t
t
t

F
b
c
w
o
0

and (6)) in order to obtain approximate expressions for the
distribution of Mn4+ within EMD crystals. The analysis fol-
lows closely that reported by Farrell and Please [1] for the
discharge of porous EMD particles, and we find that the O(1)
expression is given by:

ĈMn4+
(
ŷ, r̂, t̂

) = ĈMn4+
(
r̂, t̂
) = 1 + 3

∫ t̂

0
în
(
r̂, t̂
)

dt∗,

(38)

and the O(α1) expression is given by:

ĈMn4+ = 1 + 3
∫ t̂

0
în dt∗ + α1

[
ŷ2

2
− 3

10

]
în

−α1
2î0n

ŷ

∞∑
n=1

sin (λnŷ)

λ2
nsin (λn)

exp

(−λ2
nt̂

α1

)
. (39)

The discharge results (given in terms of the fraction
of the theoretical capacity of the cathode that is used) of
the simplified cathode model at various discharge rates are
presented in Fig. 4. Either Eq. (27) or (38) is used to model
the distribution of Mn4+ within EMD crystals. The cathode
configuration used here is for a cylindrical AA-cell, details of
which are given in Table 5. At low discharge rates, the use of
either Eq. (27) or Eq. (38) within the model yields very sim-
ilar discharge curves, however, as the current is increased,
s
o
d
a
d
o
d
o
c
t

F
o
s
t
2

cale would be needed.
In Section 4, an expression was obtained for the concen-

ration distribution of Mn4+ within an EMD crystal (i.e., Eq.
27)) by applying the method of Laplace transforms. This
xpression does not depend on simplifying assumptions, such
s α1 → 0, and that în does not change on the timescale of pro-
on diffusion. Nevertheless, if we are willing to admit these
wo assumptions, then asymptotic methods can be applied to
he crystal-scale proton diffusion problem (i.e., Eqs. (2)–(4)

ig. 3. Comparison between experimental discharge results (unshaded sym-
ols) and simplified model results (shaded symbols) for a planar cathode with
onfiguration given in Table 4 and ro = 75–150 �m when various positions
ithin the oxide crystals are chosen at which to calculate the manganese
xide conductivity. Conductivity calculated at (�) yo, (�) 0.8yo and (	)
.6yo.
ignificant discrepancies between the two models are
bserved. To understand why these discrepancies occur, we
istributions of Mn4+ within an EMD crystal were obtained
t R = Ri and r = ro as given by Eqs. (27), (38) and (39) for a
ischarge rates of 20 mA g−1 of EMD (Fig. 5a), 50 mA g−1

f EMD (Fig. 5b), or 100 mA g−1 of EMD (Fig. 5c). At a low
ischarge rate, such as that shown in Fig. 5a, the distribution
f Mn4+ within an EMD crystal is essentially independent of
rystal radius and the simplifying assumptions that constitute
he asymptotic solutions, namely, �1 → 0 and that în does

ig. 4. Discharge results for cylindrical AA-cell as given by simplified cath-
de model when either Eq. (27) (unshaded symbols) or Eq. (38) (shaded
ymbols) is used to model the distribution of Mn4+ within EMD crys-
als. (�/	) 20 mA g−1, (�/�) 50 mA g−1, (©/�) 100 mA g−1 and (♦/�)
00 mA g−1 of EMD.
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Fig. 5. Mn4+ concentration distributions of a crystal at R = Ri, and r = ro as given by Eqs. (27) (	), (38) (�) and (39) (�) for discharge rates of (a) 20 mA g−1,
(b) 50 mA g−1 and (c) 100 mA g−1 of EMD.

not change on the timescale of proton diffusion, are well
supported (in fact the α1 value corresponding to Fig. 5a is
0.17). Thus, the results predicted by Eqs. (27), (38) and (39)
correspond well in this discharge regime. When the discharge
rate is increased, as in Fig. 5b and c, the distribution of
Mn4+ within an EMD crystal becomes quite non-uniform
and the discrepancies between the predictions of Eq. (27),
(38) and (39) become significant. Indeed, at a discharge rate
of 100 mA g−1 of EMD, the assumption that α1 → 0 can no
longer be supported and the α1 value corresponding to Fig. 5c
is 0.86. In this regime, Eqs. (38) and (39) become invalid.

Table 5
Model input data for simulation of AA-cell set-up

Parameter Value

Discharge rate (mA g−1 of EMD) 20, 50, 100 and 200
Particle radius, ro (cm) 100 × 10−4

Inner radius, Ri (cm) 0.45
Outer radius, Ro (cm) 0.67
Height, H (cm) 4.04
Total mass of cathode (g) 10.62
Mass of EMD in cathode (g) 9.24
Mass of graphite in cathode (g) 0.8

6. Conclusions

A simplified model for the galvanostatic discharge of
primary alkaline battery cathodes has been presented.
The simplified model was obtained by applying Laplace
transform and perturbation methods to the discharge model
of Farrell et al. [15]. In the analysis that ensued, it is
shown that the three size scales used by Farrell et al. to
describe the porous EMD cathode can be reduced to two
size scales without the loss of generality. In addition, the
analysis demonstrates that the time taken for electrolyte to
diffuse into a porous EMD particle is fast compared with
the cathodic discharge time, and that ohmic losses within
the graphite phase of the cathode can be considered to be
negligible. Furthermore, the simplified model incorporates
a closed form expression for the distribution of Mn4+ within
an EMD crystal that is not reliant on assumptions that may
break down at high discharge rates. Numerical solutions
of the simplified model equations are achieved via the use
of a finite-volume code written in MATLAB® that can
easily be run on a standard desktop PC. The results of
the code compare favourably with relevant experimental
data.
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Appendix A

Here, we consider the Laplace transform solution [19] of
Eq. (2) subject to the boundary conditions (3) and (4) and the
initial condition (6). Taking the Laplace transform of Eqs.
(2) to (4), treating în as a function independent of CMn2+ and
substituting the initial condition (6), we obtain:

1

α1

1

ŷ2

∂

∂ŷ

(
ŷ2 ∂L

{
ĈMn4+

}
∂ŷ

)
= pL

{
ĈMn4+

}− 1, (40)

at ŷ = 0,

∂L
{
ĈMn4+

}
∂ŷ

= 0 (41)

and at ŷ = 1,

∂L
{
ĈMn4+

}
∂ŷ

= α1L
{
în
}

(42)

w
L

L

w

f

a

L

t

C

i

function g̃ (p) is given by:

g̃ (p) = α1sinh
(√

α1pŷ
)

ŷ
{√

α1pcosh
(√

α1p
)− sinh

(√
α1p

)} . (49)

To obtain the inverse Laplace transform in Eq. (48), an
extension of Cauchy’s integral formula [19] is used to write
the inverse transform as an integral in the complex plane
along the line Re(z) = γ , where z is the complex variable.
This is the so-called complex inversion integral of g̃ (p),
namely:

L−1 {g̃ (p)} = 1

2πi
lim

β→∞

∫ γ+iβ

γ−iβ

exp
(
pt̂
)
g̃ (p) dp. (50)

Applying the Residue Theorem [19], the right-hand side
of Eq. (50) may be written as the sum of the residues of the
integrand, exp

(
pt̂
)
g̃ (p), at its singularities, which occur at

pm (m = 0, 1, 2, . . ., ∞). It is noted that p0 = 0 and pm =
−λ2

m/α1 (m = 1, 2, . . ., ∞), where the values of λm are given
by the positive roots of Eq. (28). The first residue is 3 and the
other residues are given by:

2

ŷ

sin (λmŷ)

sin (λm)
exp

(−λ2
mt̂

α1

)
; (m = 1, 2, . . . , ∞) . (51)

Using these residues in Eq. (48), we obtain an expres-
sion for the concentration of Mn4+ within an EMD crystal,
n

C

A

s
t
e
n

C

w
s
e

O

A

A

A

here p is the transformation variable and L{γ} is the
aplace transform of γ . Using the transformation:

{
ĈMn4+

} = 1

p
+ f (ŷ, p)

ŷ
, (43)

e obtain the following equation set:

∂2f (ŷ, p)

∂ŷ2 = α1pf (ŷ, p) , (44)

(0, p) = 0, (45)

∂f (1, p)

∂ŷ
− f (1, p) = α1L

{
în
}

. (46)

Solving Eq. (44) subject to the conditions (45) and (46)
nd substituting the result into Eq. (43), gives:

{
ĈMn4+

}= 1

p
+ α1L

{
în
}

sinh
(√

α1pŷ
)

ŷ
(√

α1pcosh
(√

α1p
)− sinh

(√
α1p

)) .
(47)

Applying the Convolution Theorem of Laplace transforms
o Eq. (47) yields:

ˆ
Mn4+ = 1 +

∫ t̂

0
în
∣∣
t̂=t̂−t∗L−1 {g̃ (p)} dt∗. (48)

Here, t* is a dummy variable of integration, L−1 {g̃ (p)}
s the inverse Laplace transform of function g̃ (p), where the
amely:

ˆ 4
(
ŷ, t̂
) = 1 + 3

∫ t̂

0
în dt∗ + 2

ŷ

∞∑
m=1

sin (λmŷ)

sin (λm)

×
∫ t̂

0
în
∣∣
t̂=t̂−t∗exp

(−λ2
mt∗

α1

)
dt∗. (52)

ppendix B

Here, we consider the perturbation analysis of Eq. (9)
ubject to the boundary conditions (11) and (13) and ini-
ial condition (16), in the limit when α5 → 0. We begin by
xpressing Ĉe(p) as an asymptotic expansion in powers of α5,
amely:

ˆ e(p) ∼ Ĉe,0 + α5Ĉe,1 + α2
5Ĉe,2 + · · · (53)

here Ĉe,0, Ĉe,1, Ĉe,2, . . . are independent of α5. Upon sub-
tituting this expansion into Eq. (9), the following set of order
quations is obtained:

(α0
5) :

1

r̂2

∂

∂r̂

(
D̂e∞r̂2 ∂Ĉe,0

∂r̂

)
= 0. (54)

t r̂ = 1, Ĉe,0 = Ĉe. (55)

t r̂ = 0,
∂Ĉe,0

∂r̂
= 0. (56)

t t̂ = 0, Ĉe,0 = 1. (57)
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O(α5) :
∂Ĉe,0

∂t̂
= 1

r̂2

∂

∂r̂

(
D̂e∞r̂2 ∂Ĉe,1

∂r̂

)
− 3α6 în

−α7

r̂2

∂

∂r̂
(r̂2Ĉe,0v

�
(p)) (58)

At r̂ = 1, Ĉe,1 = 0. (59)

At r̂ = 0,
∂Ĉe,1

∂r̂
= 0. (60)

At t̂ = 0, Ĉe,1 = 0. (61)

Solving Eq. (54) subject to the conditions (55) to (57)
gives:

Ĉe,0(R̂, r̂, t̂) = Ĉe(R̂, t̂). (62)

Thus, to O(α0
5), the electrolyte concentration within any

porous EMD particle is equal to the electrolyte concentration
at the outer radius of the particle as given by Ĉe(R̂, t̂).

Substituting Eq. (7) into Eq. (58), multiplying by r̂2 and
rearranging, yields:

∂

∂r̂

(
D̂e∞r̂2 ∂Ĉe(p)

∂r̂

)
− α5α7

∂

∂r̂
(r̂2Ĉe(p)v̂

�
(p))

a

α

α

t
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